top of page
ciamonsnighsubwest

Bentonite



Bentonite usually forms from the weathering of volcanic ash in seawater, or by hydrothermal circulation through the porosity of volcanic ash beds,[3][4] which converts (devitrification) the volcanic glass (obsidian, rhyolite, dacite) present in the ash into clay minerals. In the mineral alteration process, a large fraction (up to 40-50 wt.%) of amorphous silica is dissolved and leached away, leaving the bentonite deposit in place.[citation needed] Bentonite beds are white or pale blue or green (traces of reduced Fe2+) in fresh exposures, turning to a cream color and then yellow, red, or brown (traces of oxidized Fe3+) as the exposure is weathered further.[5]


As a swelling clay, bentonite has the ability to absorb large quantities of water, which increases its volume by up to a factor of eight.[5] This makes bentonite beds unsuitable for building and road construction. However, the swelling property is used to advantage in drilling mud and groundwater sealants. The montmorillonite / smectite making up bentonite is an aluminium phyllosilicate mineral, which takes the form of microscopic platy grains. These give the clay a very large total surface area, making bentonite a valuable adsorbent. The plates also adhere to each other when wet. This gives the clay a cohesiveness that makes it useful as a binder and as an additive to improve the plasticity of kaolinite clay used for pottery.[6]




bentonite




One of the first findings of bentonite was in the Cretaceous Benton Shale near Rock River, Wyoming. The Fort Benton Group, along with others in stratigraphic succession, was named after Fort Benton, Montana, in the mid-19th century by Fielding Bradford Meek and F. V. Hayden of the U.S. Geological Survey.[4] Bentonite has since been found in many other locations, including China and Greece (bentonite deposit of the Milos volcanic island in the Aegean Sea). The total worldwide production of bentonite in 2018 was 20,400,000 metric tons.[7]


In geology, the term bentonite is applied to a type of claystone (a clay rock, not a clay mineral) composed mostly of montmorillonite (a clay mineral from the smectite group). It forms by devitrification of volcanic ash or tuff,[5] typically in a marine environment.[3][4] This results in a very soft, porous rock that may contain residual crystals of more resistant minerals, and which feels soapy or greasy to the touch. However, in commercial and industrial applications, the term bentonite is used more generally to refer to any swelling clay composed mostly of smectite clay minerals, which includes montmorillonite.[5] The undifferentiated reference to the weathered volcanic rock for the geologist or to the industrial mixture of swelling clays can be a source of confusion.


The montmorillonite making up bentonite is an aluminium phyllosilicate mineral whose crystal structure is described as low-charge TOT. This means that a crystal of montmorillonite consists of layers, each of which is made up of two T sheets bonded to either side of an O sheet. The T sheets are so called because each aluminium or silicon ion in the sheet is surrounded by four oxygen ions arranged as a tetrahedron. The O sheets are so called because each aluminium ion is surrounded by six oxygen or hydroxyl ions arranged as an octahedron. The complete TOT layer has a weak negative electrical charge, and this is neutralized by calcium or sodium cations that bind adjacent layers together, with a distance between layers of about 1 nanometer. Because the negative charge is weak, only a fraction of the possible cation sites on the surface of a TOT layer actually contain calcium or sodium. Water molecules can easily infiltrate between sheets and fill the remaining sites. This accounts for the swelling property of montmorillonite and other smectite clay minerals.[6]


The different types of bentonite are each named after the respective dominant cation.[8] For industrial purposes, two main classes of bentonite are recognized: sodium and calcium bentonite. Sodium bentonite is the more valuable but calcium bentonite is more common.[7] In stratigraphy and tephrochronology, completely devitrified (weathered volcanic glass) ash-fall beds are sometimes also referred to as "K-bentonites" (the illitized clay rock) when the dominant clay species is illite (a non-swelling clay).[9] However, in pure clay mineralogy, the term illite is more appropriate than "K-bentonite" (the "altered K-rock") because it is a distinct type of non-swelling clay while the commercial term bentonite implicitly refers to a swelling clay, a smectite (in the European and UK terminology), or a montmorillonite (in the US terminology).


Sodium bentonite expands when wet, absorbing as much as several times its dry mass in water. Because of its excellent colloidal properties,[10] it is often used in drilling mud for oil and gas wells and boreholes for geotechnical and environmental investigations.[11] The property of swelling also makes sodium bentonite useful as a sealant, since it provides a self-sealing, low permeability barrier. It is used to line the base of landfills, for example. Bentonite is also part of the backfill material used at the Waste Isolation Pilot Project.[12] Various surface modifications to sodium bentonite improve some rheological or sealing performance in geoenvironmental applications, for example, the addition of polymers.[13]


Sodium bentonite can be combined with elemental sulfur as fertilizer prills. These permit slow oxidation of the sulfur to sulfate, a plant nutrient needed for some crops like onions or garlic synthesizing a lot of organo-sulfur compounds, and maintain sulfate levels in rainfall-leached soil longer than either pure powdered sulfur or gypsum.[14] Sulfur/bentonite pads with added organic fertilizers have been used for organic farming.[15]


Calcium bentonite is a useful adsorbent of ions in solution,[16] as well as fats and oils. It is the main active ingredient of fuller's earth, probably one of the earliest industrial cleaning agents.[17] It has significantly less swelling capacity than sodium bentonite.[18]


Illite is the main clay constituent of potash bentonite (a rock type also known as K-bentonite or potassium bentonite). K-bentonite is a term reserved to volcanic stratigraphy and tephrochronology and is related to the weathered clay rock type only. Illite, the clay mineral, is a potassium-rich phylosilicate formed from the alteration of smectic clay in contact with groundwater rich in K+ ions.[9] Illite is a high-charge TOT clay mineral, in which sheets are bound relatively strongly by more numerous potassium ions, and so it is no longer a swelling clay and has few industrial uses.[22] In contrast to the highly hydrated Na+ ions which act as "swellers" or "expanders" ions, poorly hydrated K+ ions behave as "collapsers" when exchanging with Na+ ions accessible in the interlayers space present between two TOT layers. Dehydrated K+ ions are preferentially located in between two face-to-face hexagonal cavities formed by six joined silica tetrahedra present at the surface of the basal plane of a TOT layer (see the corresponding figure showing an elementary TOT layer). Because dehydrated, these K+ ions are sometimes said to form inner-sphere bonds with the surrounding oxygen atoms present in the hexagonal cavity hosting them. It means there is no water molecule in between the K+ ion and the oxygen atoms attached to the silica tetrahedra (T).


The main uses of bentonite are in drilling mud and as a binder, purifier, absorbent, and carrier for fertilizers or pesticides. As of around 1990, almost half of the US production of bentonite was used as drilling mud. Minor uses include filler, sealant, and catalyst in petroleum refining. Calcium bentonite is sometimes marketed as fuller's earth, whose uses overlap with those of other forms of bentonite.[11][23]


Bentonite is used in drilling mud to lubricate and cool the cutting tools (drill bit), to remove cuttings, to stabilize the borehole walls, and to help prevent blowouts (by maintaining a sufficient hydraulic pressure in the well). Bentonite also curtails drilling fluid invasion by its propensity for aiding in the formation of mud cake.[11] Much of bentonite's usefulness in the drilling and geotechnical engineering industry comes from its unique rheological properties. Relatively small quantities of bentonite suspended in water form a viscous, shear-thinning material. Most often, bentonite suspensions are also thixotropic,[24] although rare cases of rheopectic behavior have also been reported.[25] At high enough concentrations (about 60 grams of bentonite per litre of suspension, 6wt.%), bentonite suspensions begin to take on the characteristics of a gel (a fluid with a minimum yield strength required to make it move).[24]


Bentonite has been widely used as a foundry-sand bond in iron and steel foundries. Sodium bentonite is most commonly used for large castings that use dry molds, while calcium bentonite is more commonly used for smaller castings that use "green" or wet molds. Bentonite is also used as a binding agent in the manufacture of iron ore (taconite) pellets as used in the steelmaking industry.[11] Bentonite, in small percentages, is used as an ingredient in commercial and homemade clay bodies and ceramic glazes. It greatly increases the plasticity of clay bodies and decreases settling in glazes, making both easier to work with for most applications.[26][27]


The ionic surface of bentonite has a useful property in making a sticky coating on sand grains. When a small proportion of finely ground bentonite clay is added to hard sand and wetted, the clay binds the sand particles into a moldable aggregate known as green sand used for making molds in sand casting.[28] Some river deltas naturally deposit just such a blend of clay silt and sand, creating a natural source of excellent molding sand that was critical to ancient metalworking technology. Modern chemical processes to modify the ionic surface of bentonite greatly intensify this stickiness, resulting in remarkably dough-like yet strong casting sand mixes that stand up to molten metal temperatures.[citation needed] 2ff7e9595c


0 views0 comments

Recent Posts

See All

Comments


bottom of page